Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polarization-Dependent and Ellipsometric Infrared Microscopy for Analysis of Anisotropic Thin Films

Identifieur interne : 000696 ( Main/Repository ); précédent : 000695; suivant : 000697

Polarization-Dependent and Ellipsometric Infrared Microscopy for Analysis of Anisotropic Thin Films

Auteurs : RBID : Pascal:13-0252611

Descripteurs français

English descriptors

Abstract

Dielectric functions and anisotropic thin film properties such as electronic conductivity or molecular orientations are of high technological importance for engineering efficient optical, electronic, and sensing devices. This work demonstrates for the first time how full-scale polarization-dependent Fourier-transform infrared (FTIR) microscopy may be used for quantitative determination of polarized reflection coefficients of thin film samples with thicknesses down to a few nanometers. Out-of-plane and in-plane optical properties of thin silicon oxide, indium tin oxide (ITO), and polyimide films are measured and characterized quantitatively with respect to anisotropy and thickness. Sample homogeneity is accessed using FTIR microscopic mapping. By performing measurements at multiple polarizer azimuths we demonstrate the technique of ellipsometric microscopy. Exemplarily eilipsometric measurements of a polyimide film are presented and discussed. We describe how introducing a retarder into the optical path would enable sensitive phase measurements via generalized infrared ellipsometric microscopy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0252611

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Polarization-Dependent and Ellipsometric Infrared Microscopy for Analysis of Anisotropic Thin Films</title>
<author>
<name sortKey="Hinrichs, Karsten" uniqKey="Hinrichs K">Karsten Hinrichs</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Department Berlin, Albert-Einstein-Strasse 9</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Furchner, Andreas" uniqKey="Furchner A">Andreas Furchner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Department Berlin, Albert-Einstein-Strasse 9</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rappich, J Rg" uniqKey="Rappich J">J Rg Rappich</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium-Photovoltaik, Kekuléstrasse 5</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oates, Thomas W H" uniqKey="Oates T">Thomas W. H. Oates</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Department Berlin, Albert-Einstein-Strasse 9</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0252611</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0252611 INIST</idno>
<idno type="RBID">Pascal:13-0252611</idno>
<idno type="wicri:Area/Main/Corpus">000980</idno>
<idno type="wicri:Area/Main/Repository">000696</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy</term>
<term>Dielectric function</term>
<term>Electrical conductivity</term>
<term>Electronic conductivity</term>
<term>Electronic properties</term>
<term>Ellipsometry</term>
<term>Fourier transform spectroscopy</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Indium oxide</term>
<term>Layer thickness</term>
<term>Molecular orientation</term>
<term>Optical properties</term>
<term>Optical sensors</term>
<term>Polarization</term>
<term>Polyimides</term>
<term>Silicon oxides</term>
<term>Thin films</term>
<term>Tin oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polarisation</term>
<term>Ellipsométrie</term>
<term>Anisotropie</term>
<term>Couche mince</term>
<term>Fonction diélectrique</term>
<term>Propriété électronique</term>
<term>Conductivité électronique</term>
<term>Conductivité électrique</term>
<term>Orientation moléculaire</term>
<term>Capteur optique</term>
<term>Spectrométrie transformée Fourier</term>
<term>Spectrométrie FTIR</term>
<term>Epaisseur couche</term>
<term>Propriété optique</term>
<term>Oxyde de silicium</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Imide polymère</term>
<term>6855J</term>
<term>7820</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dielectric functions and anisotropic thin film properties such as electronic conductivity or molecular orientations are of high technological importance for engineering efficient optical, electronic, and sensing devices. This work demonstrates for the first time how full-scale polarization-dependent Fourier-transform infrared (FTIR) microscopy may be used for quantitative determination of polarized reflection coefficients of thin film samples with thicknesses down to a few nanometers. Out-of-plane and in-plane optical properties of thin silicon oxide, indium tin oxide (ITO), and polyimide films are measured and characterized quantitatively with respect to anisotropy and thickness. Sample homogeneity is accessed using FTIR microscopic mapping. By performing measurements at multiple polarizer azimuths we demonstrate the technique of ellipsometric microscopy. Exemplarily eilipsometric measurements of a polyimide film are presented and discussed. We describe how introducing a retarder into the optical path would enable sensitive phase measurements via generalized infrared ellipsometric microscopy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>26</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Polarization-Dependent and Ellipsometric Infrared Microscopy for Analysis of Anisotropic Thin Films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HINRICHS (Karsten)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FURCHNER (Andreas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAPPICH (Jörg)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OATES (Thomas W. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Department Berlin, Albert-Einstein-Strasse 9</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium-Photovoltaik, Kekuléstrasse 5</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>13557-13563</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000503878110250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0252611</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dielectric functions and anisotropic thin film properties such as electronic conductivity or molecular orientations are of high technological importance for engineering efficient optical, electronic, and sensing devices. This work demonstrates for the first time how full-scale polarization-dependent Fourier-transform infrared (FTIR) microscopy may be used for quantitative determination of polarized reflection coefficients of thin film samples with thicknesses down to a few nanometers. Out-of-plane and in-plane optical properties of thin silicon oxide, indium tin oxide (ITO), and polyimide films are measured and characterized quantitatively with respect to anisotropy and thickness. Sample homogeneity is accessed using FTIR microscopic mapping. By performing measurements at multiple polarizer azimuths we demonstrate the technique of ellipsometric microscopy. Exemplarily eilipsometric measurements of a polyimide film are presented and discussed. We describe how introducing a retarder into the optical path would enable sensitive phase measurements via generalized infrared ellipsometric microscopy.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Polarisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Polarization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ellipsometry</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Anisotropie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Anisotropy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Fonction diélectrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Dielectric function</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conductivité électronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electronic conductivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Conductividad electrónica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Orientation moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Molecular orientation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Capteur optique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Optical sensors</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie transformée Fourier</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Fourier transform spectroscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Imide polymère</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Polyimides</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>238</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0252611
   |texte=   Polarization-Dependent and Ellipsometric Infrared Microscopy for Analysis of Anisotropic Thin Films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024